skip to main content


Search for: All records

Creators/Authors contains: "Gupta, Gautam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the United States, out of the total electricity produced, 2% of it is consumed by the data center facility, and up to 40% of its energy is utilized by the cooling infrastructure to cool all the heat-generating components present inside the facility, with recent technological advancement, the trend of power consumption has increased and as a consequence of increased energy consumption is the increase in carbon footprint which is a growing concern in the industry. In air cooling, the high heat- dissipating components present inside a server/hardware must receive efficient airflow for efficient cooling and to direct the air toward the components ducting is provided. In this study, the duct present in the air-cooled server is optimized and vanes are provided to improve the airflow, and side vents are installed over the sides of the server chassis before the duct is placed to bypass some of the cool air which is entering from the front where the hard drives are present. Experiments were conducted on the Cisco C220 air-cooled server with the new duct and the bypass provided, the effects of the new duct and bypass are quantified by comparing the temperature of the components such as the Central Processing Unit (CPUs), and Platform controller hub (PCH) and the savings in terms of total fan power consumption. A 7.5°C drop in temperature is observed and savings of up to 30% in terms of fan power consumption can be achieved with the improved design compared with the standard server. 
    more » « less
    Free, publicly-accessible full text available May 30, 2024
  2. Increasing fossil fuel demands and growing concerns of global climate change have stimulated interest in the development of electrocatalysts to produce H 2 as an alternative zero-emission fuel from the electrolysis of water via hydrogen evolution reaction (HER). Precious or non-precious catalysts are typically loaded on high surface area carbon materials, and these supports play a critical role in both thermodynamics and kinetics of the HER. In this paper, we evaluate the electrocatalytic activity of a molecular hydrogen evolving catalyst, diacetyl-bis(4-methyl)-3-thiosemicarbazone Ni( ii ) (Ni-ATSM), on three different carbon surfaces: glassy carbon, carbon paste and pencil graphite. The overpotential for each modified electrode was benchmarked at a current density of −10 mA cm −2 . Carbon paste electrodes showed highest overpotentials (495 mV) compared to the other electrode surfaces. Polished pencil and glassy carbon modified electrodes performed similarly ( η = 395 mV for GCE and η = 400 mV for pencil). Pencil electrodes etched in acetone overnight prior to Ni-ATSM deposition produced lowest overpotentials ( η = 354 mV). Etching results in an increase in electroactive surface area and substantial decrease in the charge transfer resistance of the graphitic interface from 275 Ω to 50 Ω, verified using electrochemical impedance spectroscopy (EIS). Our studies demonstrate pencil graphite may serve as versatile, disposable, cost effective, and reproducible electrode surface for the evaluation of heterogeneous HER catalysts. Moreover, pencils can be easily cut with table saw to generate new surface for easy characterization of the surface such as electrochemistry, imaging and spectroscopy. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract The next radical change in the thermal management of data centers is to shift from conventional cooling methods like air-cooling to direct liquid cooling to enable high thermal mass and corresponding superior cooling. There has been in the past few years a limited adoption of direct liquid cooling in data centers because of its simplicity and high heat dissipation capacity. Single-phase engineered fluid immersion cooling has several other benefits like better server performance, even temperature profile, and higher rack densities and the ability to cool all components in a server without the need for electrical isolation. The reliability aspect of such cooling technology has not been well addressed in the open literature. This paper presents the performance of a fully single-phase dielectric fluid immersed server over wide temperature ranges in an environmental chamber. The server was placed in an environmental chamber and applied extreme temperatures ranging from −20 °C to 10 °C at 100% relative humidity and from 20 to 55 °C at constant 50% relative humidity for extended durations. This work is a first attempt of measuring the performance of a server and other components like pump including flow rate drop, starting trouble, and other potential issues under extreme climatic conditions for a completely liquid-submerged system. Pumping power consumption is directly proportional to the operating cost of a data center. The experiment was carried out until the core temperature reached the maximum junction temperature. This experiment helps to determine the threshold capacity and the robustness of the server for its applications in extreme climatic conditions. 
    more » « less